China factory CNC C45 Steel Spur Gear Rack Made in China bevel gear set

Product Description

Product Description

High Precision CNC C45 Steel Spur gear rack 

Gear rack is a rotating machine part with cut teeth, or cogs, which mesh with another toothed part in order to transmit torque. It includes spur gear, helical gear, skew gear, bevel gear, spiral bevel gear and so on. It is widely used for all kinds of machinery equipment.

– Product Details:

1) Material: carbon steel such as C45, 20CrMnTi, 40Cr, 42CrMo or stainless steel or copper or nylon/POM and so on.

2) Rack module: M0.5,M1,M1.5,M2,M2.5,M3,M4,M5,M6 and so on

3) pressure angle: 20°

4) High grinding procession.

5) Tooth Heat Treatment: Hardening and Tempering, High Frequency  Quenching, Carbonize Quenching and so on.

6) Shape: We have round rack and square rack. Tooth: straight and helical. 

7) Standard: European or American standard

8) OEM service: make based on your special sample or drawing and meet your need for high precision on teeth of gear

9) Export Area: Europe and America.

rack pinion steel racks gear rack

rack pinion steel racks gear rackrack pinion steel racks gear rackrack pinion steel racks gear rack

Product Parameters

Packaging & Shipping

All the products can be packed in cartons,or,you can choose the pallet packing.

MADE IN CHINA can be pressed on wooden cases.Land,air,sea transportation are available.UPS,DHL,TNT,

FedEx and EMS are all supported.

Company Profile

About Mighty Machinery

ZheJiang Mighty Machinery Co., Ltd., specializes in manufacturing Mechanical Power Transmission Products. After over 13 years hard work, MIGHTY have already get the certificate of ISO9001:2000 and become a holding company for 3 manufacturing factories. 

 

MIGHTY advantage

1, Abundant experience  in the mechanical processing industries.

2,Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and  production in time.

3,Now have 5 technical staff, we have strong capacity for design and process design, and more than 70 worker now work in our FTY and  double shift eveyday.

4,Strick quality control are apply in the whole prodution. we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.

5,Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export.

FAQ

Q: How long can I get reply after send inquiry?

A: All inquiries will be replied within 12 hours, also you may call us at any time.
 
Q: How soon can I get sample ?

A: Generally standard sample can be send out within 7days, and for the customize parts, it will depend on the detail requirment.
 
Q:What information should I give to you for inquiry?

A:Pls send the detail of the specification and QTY, also specail demands etc, and it’s better you can send us the detail drawings or catalogue.

Q: If I don’t have drawing or catalogue, how can I get sample ?

A:If you don’t have the drawing or catalogue, you can send us your sample, so we can make the drawing and sample accordingly.

Q:What is the Warranty for your products?

A:Normally our warranty is 1 year.

Standard or Nonstandard: Standard
Feature: Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Acid-Resistant, High Temperature-Resistance
Application: Conveyer Equipment
Surface Treatment: Hardening
Material: Steel/C45
Teeth Type: Straight\Helical
Samples:
US$ 3.45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear rack

How does the design of a spur gear rack affect its performance?

The design of a spur gear rack plays a crucial role in determining its performance characteristics and overall functionality. Various design elements and parameters influence the performance of a spur gear rack. Here’s how the design aspects affect its performance:

  • Tooth Profile: The tooth profile of the spur gear rack, such as involute or cycloidal, directly impacts its performance. The tooth profile affects the smoothness of tooth engagement, the load distribution along the tooth contact area, and the amount of backlash or clearance between mating gears. A well-designed tooth profile ensures efficient power transmission, minimizes noise and vibration, and maximizes the contact area for improved load-carrying capacity.
  • Pitch: The pitch of the spur gear rack refers to the distance between consecutive teeth. The pitch determines the linear motion achieved per revolution of the mating pinion gear. The design of the rack should consider the specific requirements of the application. A smaller pitch provides finer and more precise linear motion, while a larger pitch allows for faster linear motion over a given distance. The pitch selection affects the speed, accuracy, and resolution of the linear motion system.
  • Pressure Angle: The pressure angle is the angle between the line of action and the line perpendicular to the tooth surface. It affects the efficiency, load distribution, and contact strength of the gear system. Common pressure angles for spur gear racks are 14.5 degrees and 20 degrees. Higher pressure angles generally offer higher load-carrying capacity and improved contact strength. The appropriate pressure angle selection depends on the specific application requirements and the desired balance between load capacity and efficiency.
  • Module: The module of a spur gear rack defines the size and dimensions of the teeth. It affects the strength, load-carrying capacity, and overall size of the gear. A larger module generally results in larger teeth and a more robust gear rack capable of handling higher loads. However, it also increases the size and weight of the gear. The module selection should consider the application’s torque requirements, available space, and weight constraints to achieve an optimal balance between strength and size.
  • Material: The choice of material for the spur gear rack impacts its performance and durability. Common materials used include steel, stainless steel, cast iron, and various alloys. The material selection depends on factors such as load capacity, operating conditions, and desired properties like strength, wear resistance, and corrosion resistance. The material should be carefully chosen to ensure sufficient strength and durability while considering environmental factors, temperature variations, and the presence of any corrosive substances.
  • Surface Finish: The surface finish of the spur gear rack affects its performance in terms of friction, wear resistance, and noise generation. Proper surface finishing techniques, such as grinding or honing, can improve the tooth surface quality, reduce friction, and minimize noise. A smooth and properly finished tooth surface enhances the efficiency, reduces power losses, and increases the overall performance of the gear rack system.
  • Tolerance and Accuracy: The design of the spur gear rack should consider the required tolerances and accuracy for the specific application. Precise manufacturing and tight tolerances ensure proper tooth engagement, minimize backlash, and maintain accurate linear motion. The design should account for factors such as tooth profile accuracy, concentricity, and parallelism to achieve the desired performance characteristics.
  • Geometry and Strength: The overall geometry and strength of the spur gear rack affect its load-carrying capacity and resistance to tooth failure. The gear rack’s geometry, including tooth thickness, height, and width, should be designed to distribute the load evenly along the tooth contact area. Proper tooth geometry improves the gear’s ability to withstand high loads, reduces stress concentrations, and enhances its overall performance and longevity.

By carefully considering these design aspects, a spur gear rack can be optimized to meet the specific performance requirements of different applications. A well-designed gear rack ensures efficient power transmission, smooth operation, accurate linear motion, and reliable performance throughout its intended service life.

spur gear rack

How do spur gear racks contribute to load distribution and control?

Spur gear racks play a crucial role in load distribution and control in various mechanical systems. Their design and engagement with pinion gears allow for efficient power transmission, load sharing, and control over the movement of loads. Here’s a detailed explanation of how spur gear racks contribute to load distribution and control:

  • Load Transmission: Spur gear racks are designed to transmit rotational motion into linear motion. When a pinion gear engages with the gear teeth on the rack, the rotational force applied to the pinion is converted into linear motion along the rack’s length. This allows for the transfer of torque and power from the pinion to the rack, enabling the distribution of loads along the rack’s teeth.
  • Load Sharing: In systems with multiple spur gear racks, load sharing occurs as the load is distributed among the engaged gear racks. For example, in a rack and pinion steering system, the torque applied to the steering wheel is transmitted to the pinion gear, which in turn engages with the rack. As the rack moves linearly, the load is distributed evenly among the teeth of the engaged rack sections, ensuring balanced force distribution and smooth operation.
  • Force Control: By varying the input torque or adjusting the engagement between the pinion gear and the gear rack, the force applied to the rack can be controlled. This allows for precise force control in applications such as steering systems or adjustable suspension systems. By adjusting the force applied to the gear rack, the sensitivity and responsiveness of the system can be fine-tuned, providing the desired level of control and feedback to the user.
  • Position Control: Spur gear racks enable precise position control of loads. By driving the pinion gear with a motor or actuator, the linear movement of the gear rack can be accurately controlled. This is important in applications such as seat adjustments, window mechanisms, or convertible top actuation, where precise positioning is required. Gear racks provide a reliable and repeatable means of achieving the desired linear displacement with high positional accuracy.
  • Load Capacity: Spur gear racks are designed to handle high loads and distribute them evenly along the teeth of the rack. The tooth geometry and the material properties of the gear rack are carefully selected to ensure sufficient strength and load-carrying capacity. This allows spur gear racks to efficiently distribute and control loads, making them suitable for applications that involve heavy loads, such as steering systems or industrial machinery.
  • Noise and Vibration Control: Properly designed spur gear racks with accurate tooth profiles and precise engagement can help reduce noise and vibration. The smooth and continuous meshing of the pinion gear with the gear rack minimizes backlash and unwanted movement, resulting in quieter operation. Additionally, gear racks can be designed with features such as tooth modifications or damping mechanisms to further reduce noise and vibration levels.

In summary, spur gear racks contribute to load distribution and control by transmitting torque and power, sharing loads among engaged racks, allowing for force and position control, handling high loads, and reducing noise and vibration. Their precise and reliable operation makes them valuable components in various mechanical systems where load distribution, control, and precise positioning are essential.

spur gear rack

What are the advantages of using spur gear racks in mechanical systems?

Spur gear racks offer several advantages when used in mechanical systems. These advantages contribute to their widespread use and popularity across various industries. Here are some key advantages of using spur gear racks:

  • Efficient Power Transmission: Spur gear racks provide efficient power transmission between the rack and pinion gear. The straight teeth of the rack engage with the pinion gear, allowing for smooth and direct power transfer. This results in minimal power loss, making spur gear racks an efficient choice for transmitting rotational motion into linear motion or vice versa.
  • Precise Linear Motion: Spur gear racks deliver precise and controlled linear motion. The teeth on the rack engage with the pinion gear, ensuring accurate movement along the length of the rack. This precision is essential in applications that require accurate positioning, such as CNC machines, robotics, and automated systems. Spur gear racks allow for repeatable and reliable motion control.
  • High Load Capacity: Spur gear racks are designed to handle high load capacities. The straight tooth design and the wide contact area between the rack and pinion gear enable them to withstand substantial forces. This makes spur gear racks suitable for applications that involve heavy loads or high torque requirements, such as material handling systems, industrial machinery, and automotive components.
  • Simple and Compact Design: Spur gear racks have a relatively simple and compact design. They consist of a straight bar with teeth along one side, along with a pinion gear. This simplicity makes spur gear racks easy to manufacture, assemble, and maintain. The compact design allows for efficient space utilization in mechanical systems, making them suitable for applications with limited space constraints.
  • Cost-Effective: Spur gear racks are cost-effective compared to other types of gearing systems. Their simple design and ease of manufacturing contribute to lower production costs. Additionally, spur gear racks have a long service life and require minimal maintenance, reducing overall operating costs. These factors make spur gear racks a cost-efficient choice for many mechanical systems.
  • Versatility: Spur gear racks are highly versatile and can be used in a wide range of applications. From automotive steering systems to industrial machinery and robotics, spur gear racks find utility in numerous industries. They can be customized to meet specific requirements by adjusting parameters such as gear ratios, tooth profiles, and materials. The versatility of spur gear racks makes them adaptable to various mechanical systems.
  • Reliability and Durability: Spur gear racks are known for their reliability and durability. The design and tooth engagement of spur gear racks ensure robust performance and resistance to wear and tear. When properly lubricated and maintained, spur gear racks can operate smoothly and reliably for extended periods. This reliability and durability make spur gear racks suitable for demanding applications that require continuous and dependable operation.

These advantages make spur gear racks a popular choice in mechanical systems that require efficient power transmission, precise linear motion, high load capacity, and cost-effectiveness. The simplicity, versatility, and reliability of spur gear racks make them a fundamental component in various industries and applications.

China factory CNC C45 Steel Spur Gear Rack Made in China bevel gear setChina factory CNC C45 Steel Spur Gear Rack Made in China bevel gear set
editor by CX 2023-09-25

Tags: