China Professional Wholesale M1.5 Gear Rack for Spur Gear spiral bevel gear

Product Description

Product Description

Products

Gear rack

Precision grade

DIN5, DIN6, DIN7, DIN8, DIN10

Material

C45 steel, 304SS, 316SS, 40CrMo, nylon, POM

Heat treatment

High frequency,Quenching/Carburization, Teeth hardened

Surface treatment

Zinc-plated,Nickle-plated,Chrome-plated,Black oxide or as you need

Application Machine

Precision cutting machines.

Lathes machine 

Milling machines

Grinders machine

Automated mechanical systems

Automated warehousing systems.

Produce Machine

CNC engine lathe

CNC milling machine

CNC drilling machine

CNC grinding machine

CNC cutting machines

Machining center

Workstyle

Execution is more preferred than empty talk.

Stock Gear Rack Type

Specification

Color

Helical gear rack

M1 15*15*1000mm

White

M1.5 19*19*1000mm

White

M2 24*24*1000mm

White

M3 29*29*1000mm

White

M4 39x39x1000mm

White

Spur gear rak

M1 15*15*1000mm

Black

Rack Assembly

To assemble connected racks more smoothly, 2 ends of a standard rack would add half tooth which is convenient for next half tooth of next rack to be connected to a complete tooth. The following drawing shows how 2 racks connect and tooth gauge can control pitch position accurately.

With regards to connection of helical racks, it can be connected accurately by opposite tooth gauge.

1. When connecting racks, we recommend lock bores on the sides of rack first, and lock bores by the sequence of the foundation. With assembling the tooth gauge, pitch position of racks can be assembled accurately and completely.

2. Last, lock the position pins on 2 sides of rack; the assembly is completed.
 

Test

Use Coordinate Measuring Machine to test the precision and hardness of gear rack and pinion

 

Packaging & Shipping

Small quantity: We will use carton box.

Big quantity: We will use wooden cases.

 

Company Profile

ZheJiang Haorongshengye Electrical Equipment Co., Ltd.

1. Was founded in 2008
2. Our Principle:

“Credibility Supremacy, and Customer First”
3. Our Promise:

“High quality products, and Excellent Service”
4. Our Value:

“Being Honesty, Doing the Best, and Long-lasting Development”
5. Our Aim:

“Develop to be a leader in the power transmission parts industry in the world”
 

6.Our services:

1).Competitive price

2).High quality products

3).OEM service or can customized according to your drawings

4).Reply your inquiry in 24 hours

5).Professional technical team 24 hours online service

6).Provide sample service

Main products

Machines

 

Exbihition

 

Application: Machinery
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Hobbing
Toothed Portion Shape: Spur Gear
Material: Steel
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear rack

How does the design of a spur gear rack affect its performance?

The design of a spur gear rack plays a crucial role in determining its performance characteristics and overall functionality. Various design elements and parameters influence the performance of a spur gear rack. Here’s how the design aspects affect its performance:

  • Tooth Profile: The tooth profile of the spur gear rack, such as involute or cycloidal, directly impacts its performance. The tooth profile affects the smoothness of tooth engagement, the load distribution along the tooth contact area, and the amount of backlash or clearance between mating gears. A well-designed tooth profile ensures efficient power transmission, minimizes noise and vibration, and maximizes the contact area for improved load-carrying capacity.
  • Pitch: The pitch of the spur gear rack refers to the distance between consecutive teeth. The pitch determines the linear motion achieved per revolution of the mating pinion gear. The design of the rack should consider the specific requirements of the application. A smaller pitch provides finer and more precise linear motion, while a larger pitch allows for faster linear motion over a given distance. The pitch selection affects the speed, accuracy, and resolution of the linear motion system.
  • Pressure Angle: The pressure angle is the angle between the line of action and the line perpendicular to the tooth surface. It affects the efficiency, load distribution, and contact strength of the gear system. Common pressure angles for spur gear racks are 14.5 degrees and 20 degrees. Higher pressure angles generally offer higher load-carrying capacity and improved contact strength. The appropriate pressure angle selection depends on the specific application requirements and the desired balance between load capacity and efficiency.
  • Module: The module of a spur gear rack defines the size and dimensions of the teeth. It affects the strength, load-carrying capacity, and overall size of the gear. A larger module generally results in larger teeth and a more robust gear rack capable of handling higher loads. However, it also increases the size and weight of the gear. The module selection should consider the application’s torque requirements, available space, and weight constraints to achieve an optimal balance between strength and size.
  • Material: The choice of material for the spur gear rack impacts its performance and durability. Common materials used include steel, stainless steel, cast iron, and various alloys. The material selection depends on factors such as load capacity, operating conditions, and desired properties like strength, wear resistance, and corrosion resistance. The material should be carefully chosen to ensure sufficient strength and durability while considering environmental factors, temperature variations, and the presence of any corrosive substances.
  • Surface Finish: The surface finish of the spur gear rack affects its performance in terms of friction, wear resistance, and noise generation. Proper surface finishing techniques, such as grinding or honing, can improve the tooth surface quality, reduce friction, and minimize noise. A smooth and properly finished tooth surface enhances the efficiency, reduces power losses, and increases the overall performance of the gear rack system.
  • Tolerance and Accuracy: The design of the spur gear rack should consider the required tolerances and accuracy for the specific application. Precise manufacturing and tight tolerances ensure proper tooth engagement, minimize backlash, and maintain accurate linear motion. The design should account for factors such as tooth profile accuracy, concentricity, and parallelism to achieve the desired performance characteristics.
  • Geometry and Strength: The overall geometry and strength of the spur gear rack affect its load-carrying capacity and resistance to tooth failure. The gear rack’s geometry, including tooth thickness, height, and width, should be designed to distribute the load evenly along the tooth contact area. Proper tooth geometry improves the gear’s ability to withstand high loads, reduces stress concentrations, and enhances its overall performance and longevity.

By carefully considering these design aspects, a spur gear rack can be optimized to meet the specific performance requirements of different applications. A well-designed gear rack ensures efficient power transmission, smooth operation, accurate linear motion, and reliable performance throughout its intended service life.

spur gear rack

How do spur gear racks contribute to load distribution and control?

Spur gear racks play a crucial role in load distribution and control in various mechanical systems. Their design and engagement with pinion gears allow for efficient power transmission, load sharing, and control over the movement of loads. Here’s a detailed explanation of how spur gear racks contribute to load distribution and control:

  • Load Transmission: Spur gear racks are designed to transmit rotational motion into linear motion. When a pinion gear engages with the gear teeth on the rack, the rotational force applied to the pinion is converted into linear motion along the rack’s length. This allows for the transfer of torque and power from the pinion to the rack, enabling the distribution of loads along the rack’s teeth.
  • Load Sharing: In systems with multiple spur gear racks, load sharing occurs as the load is distributed among the engaged gear racks. For example, in a rack and pinion steering system, the torque applied to the steering wheel is transmitted to the pinion gear, which in turn engages with the rack. As the rack moves linearly, the load is distributed evenly among the teeth of the engaged rack sections, ensuring balanced force distribution and smooth operation.
  • Force Control: By varying the input torque or adjusting the engagement between the pinion gear and the gear rack, the force applied to the rack can be controlled. This allows for precise force control in applications such as steering systems or adjustable suspension systems. By adjusting the force applied to the gear rack, the sensitivity and responsiveness of the system can be fine-tuned, providing the desired level of control and feedback to the user.
  • Position Control: Spur gear racks enable precise position control of loads. By driving the pinion gear with a motor or actuator, the linear movement of the gear rack can be accurately controlled. This is important in applications such as seat adjustments, window mechanisms, or convertible top actuation, where precise positioning is required. Gear racks provide a reliable and repeatable means of achieving the desired linear displacement with high positional accuracy.
  • Load Capacity: Spur gear racks are designed to handle high loads and distribute them evenly along the teeth of the rack. The tooth geometry and the material properties of the gear rack are carefully selected to ensure sufficient strength and load-carrying capacity. This allows spur gear racks to efficiently distribute and control loads, making them suitable for applications that involve heavy loads, such as steering systems or industrial machinery.
  • Noise and Vibration Control: Properly designed spur gear racks with accurate tooth profiles and precise engagement can help reduce noise and vibration. The smooth and continuous meshing of the pinion gear with the gear rack minimizes backlash and unwanted movement, resulting in quieter operation. Additionally, gear racks can be designed with features such as tooth modifications or damping mechanisms to further reduce noise and vibration levels.

In summary, spur gear racks contribute to load distribution and control by transmitting torque and power, sharing loads among engaged racks, allowing for force and position control, handling high loads, and reducing noise and vibration. Their precise and reliable operation makes them valuable components in various mechanical systems where load distribution, control, and precise positioning are essential.

spur gear rack

Can you explain the purpose and applications of spur gear racks in machinery?

Spur gear racks serve various purposes and find widespread applications in machinery across different industries. They are commonly used for the conversion of rotational motion into linear motion or vice versa. Here are some key purposes and applications of spur gear racks:

Motion Conversion: One of the primary purposes of spur gear racks is to convert rotational motion into linear motion. By meshing with a pinion gear, the teeth on the rack translate the rotational movement of the pinion into a linear movement along the length of the rack. This linear motion can be utilized to drive various mechanisms and components in machinery.

Positioning and Precision: Spur gear racks are often employed for precise positioning tasks in machinery. The linear motion provided by the rack allows for accurate movement and positioning of components, tools, or workpieces. This is particularly useful in applications such as CNC machines, where precise positioning is critical for machining operations.

Power Transmission: Spur gear racks are used to transmit power between different components in machinery. By incorporating a pinion gear that meshes with the rack, rotational motion can be transferred from one part of the machinery to another. This enables the transmission of power to drive various mechanisms, such as conveyors, lifts, or other linear motion systems.

Steering Systems: Spur gear racks play a crucial role in rack and pinion steering systems, commonly used in automobiles and other vehicles. The rotational motion of the steering wheel is converted into linear motion through the interaction between the pinion gear and the rack. This allows for precise control of the vehicle’s steering, enabling the driver to navigate and maneuver the vehicle.

Linear Actuators: Spur gear racks are utilized in linear actuator systems to generate linear motion for pushing, pulling, or positioning loads. The rack and pinion configuration provides a simple and efficient method for converting rotational motion into linear motion. Linear actuators employing spur gear racks are used in various applications, including robotics, industrial automation, and machinery positioning systems.

Machine Tools: In machine tools such as milling machines, lathes, and drilling machines, spur gear racks are employed for precise movement and positioning of cutting tools or workpieces. The linear motion provided by the rack enables controlled and accurate machining operations, contributing to the overall performance and quality of the machined parts.

Automation and Robotics: Spur gear racks are widely used in automation and robotics systems. They facilitate linear motion for the movement of robotic arms, conveyors, and other automated mechanisms. The precise and controlled motion offered by spur gear racks is instrumental in achieving accurate and repeatable operations in automated processes.

Industrial Machinery: Spur gear racks find applications in various industrial machinery, including packaging machines, printing presses, textile machinery, material handling systems, and more. They contribute to the efficient and reliable operation of these machines by providing linear motion, power transmission, and precise positioning capabilities.

Overall, spur gear racks play a vital role in machinery, enabling linear motion, precise positioning, power transmission, and automation. Their versatility and reliability make them a fundamental component in numerous applications across diverse industries.

China Professional Wholesale M1.5 Gear Rack for Spur Gear spiral bevel gearChina Professional Wholesale M1.5 Gear Rack for Spur Gear spiral bevel gear
editor by CX 2023-11-02

Tags: