China supplier M4 Spur Gear Rack for Sliding Gate supplier

Product Description

Product Description

Gear rack & pinion in modulus M1 M1.5 M2 M2.5 M3 M4 M5 M6 M8

Product Name

Gear Rack & Pinion

Modulus M1, M1.5, M2, M2.5, M3, M4, M5, M6, M8 
Length 500mm/1000mm/2000mm/3000mm

Material

Stainless steel SS304 ,Carbon steel C45, Aluminum , Nylon PA6 ect

Treatment

Black oxide, Electrogavanized, Teeth indutive hardened

Hardness

HRC 40-55 after teeth inductive hardened

Standard

DIN, ANSI,  JIS,  BS,  ISO

Grade

6 , 7 , 8,  9

 

TYPE NO. TYPE NO.

M1 15X15X1000

M4 40X40X1000
M1 15X15X2000 M4 40X40X2000
M1.5 17X17X1000 M4 40X40X3000
M1.5 17X17X2000 M5 50X50X1000
M2 20X20X1000 M5 50X50X2000
M2 20X20X2000 M5 50X50X3000
M2 20X20X3000 M6 60X60X1000
M2.5 25X25X1000 M6 60X60X2000
M2.5 25X25X2000 M6 60X60X3000
M2.5 25X25X3000 M8 80X80X1000
M3 30X30X1000 M8 80X80X2000
M3 30X30X2000 M8 80X80X3000
M3 30X30X3000  

Detailed Photos

 

 

Catalogue

Workshop

                  Milling teeh                                                                                              Inspecting teeth

 

Packaging & Shipping

 

FAQ

Q1: Are you trading company or manufacturer ?
A: We are factory.

Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days.
2.Production Lead-times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Toothed Portion Shape: Spur Gear
Modulus: M1 M1.5 M2 M2.5 M3 M4 M5 M6 M8
Length: 500mm/1000mm/2000mm/3000mm
Origin: Zhejiang
Customization:
Available

|

Customized Request

spur gear rack

Can spur gear racks be customized for specific machinery and equipment?

Yes, spur gear racks can be customized to meet the specific requirements of different machinery and equipment. The versatility and flexibility of spur gear racks allow for customization in various aspects, enabling their seamless integration into specific applications. Here’s how spur gear racks can be customized:

Size and Dimension: Spur gear racks can be manufactured in different sizes and dimensions to suit the space constraints and design specifications of specific machinery and equipment. The length, width, and height of the rack can be adjusted to ensure optimal fit and compatibility within the system. Customizing the size and dimension of the rack allows for efficient utilization of available space and seamless integration into the mechanical assembly.

Material Selection: Spur gear racks can be made from different materials depending on the application requirements. Common materials include steel, stainless steel, cast iron, and various alloys. The choice of material depends on factors such as load capacity, durability, corrosion resistance, and operating conditions. Customizing the material selection ensures that the spur gear rack is suitable for the specific machinery or equipment, considering factors such as environmental conditions, weight constraints, and mechanical stresses.

Tooth Profile: The tooth profile of a spur gear rack can be customized to optimize its performance for specific applications. Different tooth profiles, such as involute, cycloidal, or modified profiles, can be employed to achieve specific characteristics like smooth engagement, reduced noise, or increased load capacity. The selection of the tooth profile is tailored to the requirements of the machinery or equipment, ensuring optimal performance and longevity.

Pressure Angle: The pressure angle, which defines the angle between the line of action and the line perpendicular to the tooth surface, can be customized for spur gear racks. By selecting an appropriate pressure angle, the gear’s efficiency, load distribution, and contact strength can be optimized for specific machinery and equipment. Customizing the pressure angle helps in achieving the desired mechanical properties and performance of the spur gear rack.

Surface Treatment: Spur gear racks can undergo various surface treatments to enhance their performance and durability. Surface treatments such as heat treatment, case hardening, coating, or plating can be applied to improve wear resistance, corrosion resistance, and reduce friction. Customizing the surface treatment ensures that the spur gear rack can withstand the specific operating conditions and environmental factors it will encounter in the machinery or equipment.

Gear Ratio: The gear ratio between the spur gear rack and the mating pinion gear can be customized to achieve the desired linear motion or power transmission characteristics. By adjusting the number of teeth on the rack and the pinion gear, the gear ratio can be tailored to the specific requirements of the machinery or equipment. Customizing the gear ratio allows for precise control of linear motion or adapting power transmission to meet the desired speed and torque requirements.

By considering these customization options, spur gear racks can be tailored to match the unique needs of different machinery and equipment. Customization ensures that the spur gear rack integrates seamlessly with the overall mechanical system, enhances performance, and contributes to the overall efficiency and reliability of the machinery or equipment.

spur gear rack

How do spur gear racks contribute to load distribution and control?

Spur gear racks play a crucial role in load distribution and control in various mechanical systems. Their design and engagement with pinion gears allow for efficient power transmission, load sharing, and control over the movement of loads. Here’s a detailed explanation of how spur gear racks contribute to load distribution and control:

  • Load Transmission: Spur gear racks are designed to transmit rotational motion into linear motion. When a pinion gear engages with the gear teeth on the rack, the rotational force applied to the pinion is converted into linear motion along the rack’s length. This allows for the transfer of torque and power from the pinion to the rack, enabling the distribution of loads along the rack’s teeth.
  • Load Sharing: In systems with multiple spur gear racks, load sharing occurs as the load is distributed among the engaged gear racks. For example, in a rack and pinion steering system, the torque applied to the steering wheel is transmitted to the pinion gear, which in turn engages with the rack. As the rack moves linearly, the load is distributed evenly among the teeth of the engaged rack sections, ensuring balanced force distribution and smooth operation.
  • Force Control: By varying the input torque or adjusting the engagement between the pinion gear and the gear rack, the force applied to the rack can be controlled. This allows for precise force control in applications such as steering systems or adjustable suspension systems. By adjusting the force applied to the gear rack, the sensitivity and responsiveness of the system can be fine-tuned, providing the desired level of control and feedback to the user.
  • Position Control: Spur gear racks enable precise position control of loads. By driving the pinion gear with a motor or actuator, the linear movement of the gear rack can be accurately controlled. This is important in applications such as seat adjustments, window mechanisms, or convertible top actuation, where precise positioning is required. Gear racks provide a reliable and repeatable means of achieving the desired linear displacement with high positional accuracy.
  • Load Capacity: Spur gear racks are designed to handle high loads and distribute them evenly along the teeth of the rack. The tooth geometry and the material properties of the gear rack are carefully selected to ensure sufficient strength and load-carrying capacity. This allows spur gear racks to efficiently distribute and control loads, making them suitable for applications that involve heavy loads, such as steering systems or industrial machinery.
  • Noise and Vibration Control: Properly designed spur gear racks with accurate tooth profiles and precise engagement can help reduce noise and vibration. The smooth and continuous meshing of the pinion gear with the gear rack minimizes backlash and unwanted movement, resulting in quieter operation. Additionally, gear racks can be designed with features such as tooth modifications or damping mechanisms to further reduce noise and vibration levels.

In summary, spur gear racks contribute to load distribution and control by transmitting torque and power, sharing loads among engaged racks, allowing for force and position control, handling high loads, and reducing noise and vibration. Their precise and reliable operation makes them valuable components in various mechanical systems where load distribution, control, and precise positioning are essential.

spur gear rack

In which industries are spur gear racks typically used?

Spur gear racks find application in a wide range of industries due to their versatility and ability to convert rotational motion into linear motion. Some of the industries where spur gear racks are typically used include:

  • Automotive: The automotive industry extensively utilizes spur gear racks in various applications. Rack and pinion steering systems in cars and trucks rely on spur gear racks for precise and responsive steering control. Additionally, spur gear racks are employed in automotive assembly lines, automated systems, and power transmission mechanisms.
  • Aerospace and Defense: In the aerospace and defense sectors, spur gear racks are employed in diverse applications. They are used in aircraft control systems, missile guidance systems, radar systems, and various mechanisms requiring linear motion or power transmission. The reliability and precision offered by spur gear racks make them suitable for critical aerospace and defense applications.
  • Industrial Machinery: Spur gear racks are widely used in industrial machinery across different sectors. They are found in packaging machines, printing presses, textile machinery, material handling systems, and other equipment requiring linear motion, precise positioning, or power transmission. Industrial machinery relies on spur gear racks for efficient and reliable operation.
  • Robotics and Automation: In the fields of robotics and automation, spur gear racks play a crucial role. They are employed in robotic arms, automated manufacturing systems, pick-and-place machines, and various other automated mechanisms. Spur gear racks provide the necessary linear motion and precise positioning required for accurate and repeatable operations in these industries.
  • Machine Tools: Spur gear racks are commonly used in machine tools such as milling machines, lathes, drilling machines, and CNC systems. They enable precise movement and positioning of cutting tools or workpieces, contributing to the accuracy and quality of machining operations. Spur gear racks are integral to the performance of machine tools.
  • Material Handling and Logistics: The material handling and logistics industry heavily relies on spur gear racks for conveyors, lifts, and other linear motion systems. They are used in automated warehouses, distribution centers, baggage handling systems at airports, and various other material handling applications. Spur gear racks enable efficient movement and positioning of goods and materials.
  • Medical Equipment: Spur gear racks are utilized in medical equipment and devices for precise motion control and positioning. They find applications in medical imaging systems, robotic surgical equipment, patient positioning systems, and laboratory automation. The accuracy and reliability of spur gear racks contribute to the performance and safety of medical devices.
  • Renewable Energy: The renewable energy sector, particularly in wind turbines and solar tracking systems, employs spur gear racks. In wind turbines, spur gear racks enable the adjustment of blade pitch, allowing optimal capturing of wind energy. Solar tracking systems utilize spur gear racks to orient solar panels for maximizing energy absorption from sunlight.

These are just a few examples of the industries where spur gear racks are typically used. The versatility and functionality of spur gear racks make them applicable in numerous other industries, ranging from consumer electronics to mining and beyond. The specific requirements of each industry determine the design, size, and load capacity of spur gear racks used in their respective applications.

China supplier M4 Spur Gear Rack for Sliding Gate supplier China supplier M4 Spur Gear Rack for Sliding Gate supplier
editor by CX 2023-11-02

Tags: